

Generators, Light Towers, Compressors, and Heaters

Used Compressors Minnesota - Power is transferred into potential energy and stored as pressurized air inside of an air compressor. Air compressors use diesel, gasoline or electric motors, forcing air into a storage tank to pressurize it. After the tank reaches a certain limit, it is turned off and the compressed air is held in the tank until it needs to be used. Compressed air is used for many applications. As the kinetic energy in the air is used, the tank depressurizes. Once the lower limit is reached, the air compressor turns on again to start the pressurization process again.

Positive Displacement Air Compressors There are a variety of air compression methods. These methods are divided into positive-displacement or roto-dynamic categories. The air is forced into a chamber with decreased volume in the positive-displacement model and this is how the air becomes compressed. A port or valve opens one maximum air pressure is achieved. Next, the air is discharged from the compression chamber into the outlet system. There are different kinds of positive-displacement compressors including Vane Compressors, Piston-Type and Rotary Screw Compressors.

Dynamic Displacement Air Compressors Centrifugal air compressors, along with axial compressors fall under the dynamic displacement air compressor category. A rotating component discharges its' kinetic energy and it eventually converts into pressure energy. A spinning impeller generates centrifugal force, accelerating and decelerating contained air, creating pressurization. Air compressors create heat and need a method to dispose of the heat, typically with some kind of water or air cooling mechanism. Changes in the atmosphere play a role in compressor cooling. Many factors need to be considered for this kind of equipment including the power available from the compressor, inlet temperature, the location of application and ambient temperature.

Air Compressor Applications Numerous industries rely on air compressors. Air compressors are used to provide pneumatic power to equipment such as air tools and jackhammers, to fill tires with air, to supply clean air with moderate pressure to divers and much more. Copious amounts of moderate pressure air are generated for numerous industrial applications.

Types of Air Compressors The vast majority of air compressors are either the rotary screw kind, the rotary vane type or the reciprocating piston model. These air compressor models are utilized for portable and smaller applications.

Air Compressor Pumps Two of the main kinds of air-compressor pumps include oil-injected and oil-less kinds. The oil-free system is more expensive compared to oil-lubed systems and they last less time. Overall, the oil-less system is considered to deliver higher quality.

Power Sources There are a variety of power sources that can be used alongside air compressors. Electric, gas and diesel-powered models are the most popular; although, other models have been engineered to use hydraulic ports, power-take-off or vehicle engines that are often utilized in mobile applications. Isolated work sites with limited electricity commonly use diesel and gas-powered machines. Gas and diesel models are noisy and emit exhaust. Interior locations such as workshops, warehouses, garages and production facilities have power and can rely on quieter, electric-powered models.

Rotary-Screw Compressor One of the most sought after compressors is the rotary-screw compressor. This model of gas compressor relies on a positive-displacement mechanism of the rotary type. These models are often used to replace piston compressors in vast industrial applications where large volumes of high-pressure air are required. Impact wrenches and high-power air tools are common. Gas compression of a rotary-screw model features a sweeping, continuous motion, allowing minimal pulsation which is common in piston model compressors and may cause a less desirable flow surge. Compressors use rotors to create gas compression in the rotary-screw compressor. Timing gears come into play with dry-running rotary-screw compressor models. These components are important to ensure the female and male rotors operate perfectly aligned. In oil-flooded rotary-screw compressors, the space between the rotors is lubricated. This serves as a hydraulic seal while simultaneously transferring mechanical energy between the rotors. Entering at the suction portion, gas travels through the threads while the screws rotate; forcing the gas to pass through the compressor and exit through the screws ends. Success and overall effectiveness rely on specific clearances being achieved

between the sealing chamber of the compression cavities, the rotors and the helical rotors. Fast speed and rotation are behind minimizing the ratio of a leaky flow rate or an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Mobile models that rely on tow-behind trailers are another option compared to fixed models. They use compact diesel engines for power. Commonly called “construction compressors,” these portable compression units are useful for road construction, pneumatic pumps, riveting tools, industrial paint systems and sandblasting jobs. Scroll Compressor A scroll compressor is used to compress refrigerant. It is common in vacuum pumps, to supercharge vehicles and in air conditioning equipment. Scroll compressors are used in many automotive air-conditioning units, residential heat pumps and air-conditioning systems to replace wobble-plate traditional and reciprocating rotary compressors. Fluids including gases and liquids are pumped, compressed and pressurized with the dual interleaving scrolls on this compressor. One of the scrolls is usually in a fixed position and the other scroll orbits extensively with no rotation. This dynamic action traps and compresses or pumps fluid between both scrolls. The compression movement happens when the scrolls synchronously rotate with their rotation centers misaligned to create an orbiting motion. The Archimedean spiral is found in flexible tubing variations. It functions similarly to a tube of toothpaste and resembles a peristaltic pump. Casings contain a lubricant to prevent exterior abrasion of the pump. The lubricant also dispels heat. The peristaltic pump is a great solution since there are no moving items contacting the fluid. The lack of glands, seals and valves keeps them simple to operate and fairly inexpensive in terms of maintenance. Compared to additional pump items, this tube or hose piece is fairly low cost.